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A Rosen Etymology

by A. H. Louie

86 Dagmar Avenue, Ottawa, Ontario K1L 5T4, Canada
(e-mail: ahlouie@rogers.com)

‘When a thing has been said once, it is hard to say it differently.” (Aristotle)
I composed this essay as a memorial to my mentor Robert Rosen, who had said it first.
Sicut patet per Biologum mathematicum. . .

This essay contains a few of my interpretations of Robert Rosen’s conception of Nature. I shall study
the four notions that form the core of his whole-lifetime’s scientific work: simple system, mechanism,
complex system, and organism. Their set-theoretic interconnections culminate in Rosen’s new taxonomy
of natural systems.

1. Introduction. — Let us start with a short episode from Chapt. VI of Lewis Carroll’s
book ‘Through the Looking-Glass, and What Alice Found There’ (1871):

‘I don’t know what you mean by «glory»’, Alice said.

Humpty Dumpty smiled contemptuously. ‘Of course you don’t — till I tell you. I meant «there’s a nice
knock-down argument for you»!’

‘But «glory» doesn’t mean «a nice knock-down argument»’, Alice objected.

‘When I use a word’, Humpty Dumpty said, in a rather scornful tone, ‘it means just what I choose it to
mean — neither more nor less.’

‘The question is’, said Alice, ‘whether you can make words mean so many different things.’

‘The question is’, said Humpty Dumpty, ‘which is to be master — that’s all.’

Humpty’s point of view is known in philosophy as nominalism: the doctrine that
universals or abstract concepts are mere names without any corresponding ‘reality’. The
issue arises because, in order to perceive a particular object as belonging to a certain
class, say ‘organism’, one must have a prior notion of the term ‘organism’. Does this
term, described by this prior notion, then have an existence independent of particular
organisms? When a word receives a specific technical definition, does it have to reflect
its prior notion, the common-usage sense of the word? Nominalism says no.

A closely related issue is a fallacy of misconstrual in logic known as semantic
equivocation. This fallacy is quite common, because words often have several different
meanings. A word may represent any one of several concepts, and the semantics of its
usage are context-dependent. Errors arise when the different concepts with different
consequences are mixed together as one. For a word that has a technical definition in
addition to its everyday meaning, non sequitur may result when the distinction is
blurred.
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Confusion often ensues from a failure to clearly understand that words mean ‘neither
more nor less’ than what they are defined to mean, not what they are perceived to mean.
This happens even in mathematics, where terms are usually more precisely defined than
in other subjects. The most notorious example is the term ‘normal’, which appears in
numerous mathematical subject areas to define objects with specific properties. In almost
all cases (e.g., normal vector, normal subgroup, normal operator), the normal subclass is
nongeneric within the general class of objects; i.e., what is defined as ‘normal’ is anything
but normal in the common-usage sense of ‘standard’, ‘regular’, or ‘typical’.

It is not my purpose here to discuss nominalism and semantic equivocation
themselves. They are simply the philosophical and logical undertone of what follows.
The thrust of this essay is, rather, the exploration of four concepts that form the core of
Robert Rosen’s whole-lifetime’s scientific work:

Simple System Mechanism
Complex System Organism

I shall study these (and other related) terms as Rosen defined them, explore the
interconnections among these concepts, and examine whether they correspond to
‘reality’ (i.e., the meanings of these terms in common usage). References are drawn
from the Rosen tierce ‘Organisms as Causal Systems which are not Mechanisms: an
Essay into the Nature of Complexity’ [1], the posthumously published collection Essays
on Life Itself’ [2], and, of course, the Rosen Trilogy ‘ Fundamentals of Measurement and
Representation of Natural Systems’ [3], ‘Anticipatory Systems’ [4], and ‘Life Itself’ [5].

A juxtaposition of the four concepts appears in the introduction of [1]:

‘1. Our current system theory, including all that presently constitutes physics or physical science, deals
exclusively with a very special class of systems that I shall call simple systems or mechanisms.

2. Organisms, and many other kinds of material systems, are not mechanisms in this sense. Rather, they
belong to a different (and much larger) class of systems, which we shall call complex.

3. Thus the relation between contemporary physics and biology is not, as everyone routinely supposes, that
of general to particular.

4. To describe complex systems in general, and organisms a fortiori, an entirely novel kind of mathematical
language is necessary.

5. A simple system can only approximate to a complex one, locally and temporarily, just as, e.g., a tangent
plane can only approximate to a nonplanar surface locally and temporarily. Thus in a certain sense, a
complex system can be regarded as a kind of global limit of its approximating simple subsystems.

6. Complex systems, unlike simple ones, admit a category of final causation, or anticipation, in a perfectly
rigorous and nonmystical way.’

Before I begin studying these terms in detail, let me give a hint of what is to come.
Rosen, in Chapter 20 of [2], stated thus: ‘My usage of the term complex differs
essentially from the way other authors define it.’

2. The Dichotomy. — Just as life itself, the Rosen terminology evolves. I shall take the
amendments and supersedences in the chronological order of the five major references:
[Bl<[M4]<[1]<[5]<[2].

‘System’ is a basic undefined term, a primitive. It takes on the intuitive meaning of
‘a collection of material or immaterial things that comprises one’s object of study’.
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‘Natural system’ is also a primitive. It, therefore, also assumes its intuitive meaning, ‘a
system of material things in the real world’. It is often synonymously referred to as
‘physical system’ and ‘material system’. In Sect.2.1 of [4], a natural system is
characterized as follows:

e a natural system is a member or element of the external world,
e a natural system is a set of qualities, to which definite relations can be imputed.

A characterization is not a formal definition: simply a refinement of the usual
intuitive meaning.
In Sect. 5.4 of [3], one finds this:

‘...a [natural] system is simple to the extent that a single description suffices to account for our interaction
of the system; it is complex to the extent that this fails to be true.’

Note that these are ‘the beginning’, preliminary definitions of the terms ‘simple
system’ and ‘complex system’. ‘Simple’ and ‘complex’ are used as attributes of natural
systems, but the adjectives themselves are not defined (and therefore must have their
common-usage meanings whenever they are not modifying the noun ‘system’). From
the outset, a dichotomy is established. A complex system is defined as a system that is
not simple. The two categories of simple and complex systems are mutually exclusive.
They are, indeed, complements of each other. I shall discuss the concept of
‘complement’ in more detail below (see Chapt. 6).

Note also that the term ‘complexity’ is never defined either. It is just used as the
noun corresponding to the adjective ‘complex’, taking the common-usage meaning of
‘the state or quality of being complex’.

Because of the Rosen-defined dichotomy, there are no ‘degrees of complexity’ when
it comes to natural systems. According to the Rosen definition, a natural system is
either simple or complex. One may, at best, make the trivial declarations that ‘a simple
system is simpler than a complex system’ and that ‘a complex system is more complex
than a simple system’. But one cannot say, for example, that ‘a complex natural system
is more complex than another’, when ‘complex’ is used as the Rosen attribute of natural
systems.

The comparatives ‘simpler’ and ‘more complex’ have no Rosen definitions, and,
therefore, must retreat to their common-usage meanings, i.e., that of ‘less complicated’
and ‘more complicated’. So, when one says one system is more complex than another,
the complexity therein is treated as a measurable, observable property, i.e., in the von
Neumann sense (see, e.g., Chapt. 2 of [2]). For example, one may say that an object B is
more complex than an object A in the same category if there exists a monomorphism
from A to B. (For a review on this and other categorical concepts, see my tierce
‘Categorical System Theory’ [6], or a standard reference on category theory such as
[7].) For a simpler example, one may say that a set B is more complex (i.e., more
complicated) than a set A if A is a subset of B, from the mere fact that the set B may
possibly contain elements that are not found in the set A.

Next, in Sect. 5.7 and 7.1, respectively, of [4], one finds this:



CHEMISTRY & BIODIVERSITY - Vol. 4 (2007) 2299

e ‘...we are going to define a system to be complex to the extent that we can observe it in non-equivalent
ways.’

o ‘...this category of general dynamical systems, in which all science has hitherto been done, is only able to
represent what I call simple systems or mechanisms. Natural systems which have mathematical images
lying outside of this category and which accordingly do not admit a once-and-for-all partition into states
plus dynamical laws, are thus not simple systems; they are complex.’

The final refinement of the definitions of simple and complex systems appears in
Chapt. 19 of [2], and I state it formally as:

Definition 2.1. A system is simple if all of its models are simulable. A system that is
not simple, and that accordingly must have a nonsimulable model, is complex.

A model is a commutative encoding and decoding between two systems in what
Rosen calls a modeling relation (for a review, see Chapts. 2 and 3 of [4]). A model is
simulable if it is ‘definable by an algorithm’ (see Chapt. 7 of [5]). It is variously called
‘computable’, ‘effective’, and ‘evaluable by a mathematical (Turing) machine’. The
characterization of simulability applies to formal systems. A formal system in Rosen’s
lexicon simply means ‘an object in the universe of mathematics’. It includes, but is not
limited and, therefore, not equivocated to Hilbert’s formalism. In this context, a simple
system according to Rosen is a natural system with the property that every formal
system that encodes it through the modeling relation is simulable.

In each refinement of the definitions, the simple system/complex system dichotomy
is preserved. This dichotomy, indeed, is essentially what distinguishes the ‘absolute’
complexity of Rosen from the ‘relative’ complexity of ‘other authors’. Rosen wrote in
Chapt. 2 of [2]:

‘A system is complex if it has noncomputable models. This characterization has nothing to do with
more complication, or with counting of parts or interactions; such notions, being themselves predicative,
are beside the point.

1t should be noted that there are many deep parallels between the dichotomy we have drawn between
simple (predicative) and complex (impredicative), and the dichotomy between the finite and the infinite.
Just as ‘infinite’ is not just ‘big finite’, impredicatives are not just big (complicated) predicatives. In both
cases, there is no threshold to cross, in terms of how many repetitions of a rote operation such as ‘add one’
are required to carry one from one realm to the other, nor yet back again.’

In the introduction of [1] quoted in the previous chapter, and in the informal
definition of Sect. 7.1 of [4], as quoted above, the term mechanism is introduced as a
synonym of simple system. The same equivalence also appears in Sect. 7B of [5]:

‘I shall express these notions in terms of true modelling relations and shall be led thereby to a new class of
systems, which I shall call simple systems or mechanisms. These are characterized by the property that
every model of them is simulable.’

The formal definition of mechanism then appears in Sect. 8B of [5], and I state it
formally as:

Definition 2.2. A natural system N is a mechanism if and only if all of its models are
simulable.
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The definition of mechanism is identical to the above definition (Definition 2.1) of
the term simple system. So far, | have presented the Rosen etymology of mechanism =
simple system and of complex system. The fourth term, organism, will have to wait, until
I introduce a little mathematical logic.

3. Conditional Statements and Variations. — Lewis Carroll is the pen-name of the
logician Rev. Charles Lutwidge Dodgson. Here is another episode in his Alice’s
adventures, this time from Chapt. VII of ‘Alice’s Adventures in Wonderland’ (1865):

‘Then you should say what you mean’, the March Hare went on.

‘I do’, Alice hastily replied; ‘at least — at least I mean what I say — that’s the same thing, you know’.
‘Not the same thing a bit!’, said the Hatter. ‘Why, you might just as well say that «I see what I eat» is the
same thing as «I eat what I see»!’

‘You might just as well say’, added the March Hare, ‘that «I like what I get» is the same thing as «I get
what I like»!’

‘You might just as well say’, added the Dormouse, which seemed to be talking in his sleep, ‘that «I
breathe when I sleep» is the same thing as «I sleep when I breathe»!’

‘It is the same thing with you’, said the Hatter, and here the conversation dropped, and the party sat
silent for a minute, ...

Many statements, especially in mathematics, are of the form: ‘if p, then g’. These are
called conditional statements, and are denoted in the predicate calculus of formal logic
by:

P—q 1)

The ‘if clause’ p is called the antecedent, and the ‘then clause’ g is called the consequent.
Note that the conditional form / may be translated equivalently as ‘g if p’. So, the
clauses of the sentence may be written in the reverse order, when the antecedent does
not in fact ‘go before’, and the conjunction ‘then’ does not explicitly appear in front of
the consequent.

If the antecedent is true, then the conditional statement is true if the consequent is
true, and the conditional statement is false if the consequent is false. If the antecedent is
false, then the conditional statement is true, regardless of whether the consequent is
true or false. In other words, the conditional p — q is false if p is true and q is false, and it
is true otherwise.

Alice’s ‘I do’ is the contention ‘I say what I mean’. This may be put as the conditional
statement: ‘If I mean it, then I say it’. This corresponds to form 7, with p =‘I mean it’,
and with g="‘T say it’. It is equivalent to the statement: ‘I say it if I mean it".

The conditional form 7 may also be read as ‘p only if q’. Alice’s statement is then: ‘/
mean it only if I say it’. The adverb ‘only’ has many nuances, and in common usage, ‘only
if’ is sometimes used simply as an emphasis of ‘if’. But in mathematical logic, ‘only if’
means ‘exclusively if’. So, ‘p only if ¢’ means: ‘if g does not hold, then p cannot hold
either’. In other words, it is logically equivalent to ‘If not ¢, then not p’, which in the
predicate calculus is:

~q—"p )
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where the symbol ‘=’ denotes negation (the logical not). The conditional form 2 is called
the contrapositive of form 1. The contrapositive of Alice’s ‘I mean it only if I say it’ (i.e.,
‘if  mean it, then I say it’) is the equivalent conditional statement: ‘If I do not say it, then
I do not mean it

The conditional form

q—p (3)

is called the converse of the form I, and the equivalent contrapositive of the converse,
i.e., the conditional form

“p—"q 4)

is called the inverse of the original form /. A conditional statement and its converse or
inverse are not logically equivalent. For example, if p is true and g is false, then the
conditional p —gq is false, but its converse g —p is true. The confusion between a
conditional statement and its converse is a common mistake. Alice thought ‘I mean
what I say’ (i.e., the converse statement ‘If I say it, then I mean it’) was the same thing as
‘I say what I mean’ (the original conditional statement ‘if I mean it, then I say it’), and
was then thoroughly ridiculed by her Wonderland acquaintances.
The conjunction

(p—q)N(g—p) ()

(where the symbol ‘A’ is the logical and) is abbreviated into

P<q, (6)

called a biconditional statement. Since ¢ — p may be read ‘p if ¢’, and since p — g may
be read ‘p only if ¢’, the biconditional statement is ‘p if and only if q’, which often is
abbreviated as ‘p iff ¢’. If p and ¢ have the same truth value (i.e., either both are true or
both are false), then the biconditional statement p < g is true; if p and g have opposite
truth values, then p < ¢ is false.

4. Implications. — In mathematics, theorems (also propositions, lemmata, and
corollaries) assert the truth of statements. Grammatically speaking, they should have as
their subjects the statement (or the name of, or some other reference to, the statement),
and as predicates the phrase ‘is true’ (or ‘holds’, or some similar such). For example, the
concluding Rosen theorem in Sect. 9G of [5] is:

Theorem 4.1. There can be no closed path of efficient causation in a mechanism.
This should be understood as:

Theorem 4.1'. ‘There can be no closed path of efficient causation in a
mechanism’ is true.
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Or, what is the same:
Theorem 4.1'. Theorem 4.1 is true.
But, of course, this Theorem 4.1’ really means:
Theorem 4.1”. Theorem 4.1’ is true.
Or, equivalently:
Theorem 4.1”. “Theorem 4.1 is true’ is true.
This idea of a ‘statement about a statement’ may, alas, be iterated ad infinitum, to:

Theorem 4.1°. ...““Theorem 4.1 is true’ is true’ is true’ is true’ is true...

Lewis Carroll wrote about this hierarchical ‘Reasoning about Reasoning’ paradox
in a witty dialogue ‘What the Tortoise said to Achilles’ [8]. Efficiency and pragmatism
dictate the common practice that the predicate is implicitly assumed, and hence usually
omitted. A theorem, then, generally consists of just the statement itself, the truth of
which it asserts.

An implication is a true statement of the form:

‘p—q’ is true (7)
It is a statement about (the truth of) the conditional statement:
P—q )
The implication 7 is denoted in formal logic by

P=q, 9)

which is read as ‘p implies q’. When a conditional statement is expressed as a theorem in
mathematics, viz.

Theorem. If p, then g.

it is understood in the sense of 7, that it is an implication.

The difference between the symbols ‘—’ and ‘=", i.e., between a conditional
statement and an implication, is that of syntax and semantics. Note that p — ¢ is just a
proposition in the predicate calculus, which may be true or false. But the formp = g is
a statement about the conditional statement p — ¢, asserting that the latter is a true
statement. In particular, when p = g, the situation that p is true and ¢ is false (which is
the only circumstance for which the conditional p — ¢ is false) cannot occur.

Since a conditional statement and its contrapositive are equivalent, when p — g is
true, the form —g — —p is also true. The contrapositive inference

(r=4q) = (g ="p) (10)

is itself an implication, called modus tollens in mathematical logic.
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Most mathematical theorems are stated, or may be rewritten, as implications.
Rosen’s Theorem 4.1, e.g.,is p = q, with p="‘N is a mechanism’, and with g = ‘there is
no closed path of efficient causation in N’, where N is a natural system. Stated explicitly,
it is the following theorem:

Theorem 4.2. If a natural system N is a mechanism, then there is no closed path
of efficient causation in N.

The equivalent contrapositive implication =g = —p then leads to:

Theorem 4.3. If a closed path of efficient causation exists in a natural system N,
then N cannot be a mechanism.

A true statement of the form:
‘p—q’ is true, (11)

which asserts the truth of a biconditional statement, is called an equivalence. It is
denoted as:

P <=q (12)
and is read as ‘p and q are equivalent’. It is clear from the definitions that the
equivalence 12 is equivalent to the conjunction:

p=gqandqg =p (13)

When p < ¢, either both p and g are true, or both are false. When a biconditional
statement is expressed as a theorem in mathematics, viz.

Theorem. p if and only if q.

it is understood in the sense of 77 that the biconditional statement p < q is, in fact, true,
and that it is the equivalence p < q.

A definition is trivially a theorem — by definition, as it were. It is also often
expressed as an equivalence, i.e., with an ‘if and only if’ statement. See, e.g., the above
Definition 2.2 of ‘mechanism’.

Occasionally, a definition may be stated as an implication (see, e.g., Definition 2.1 of
‘simple system’), but in such cases the converse is implied (by convention, or, indeed,
by definition). Stated otherwise, a definition is always an equivalence, whether it is
expressed as such or not, between the term being defined and the defining conditions.
As a simple example, consider the definition of ‘subset’, which may be given as ‘A set A
is a subset of a set B if every element of A is an element of B.” This is the implication
p = q, where p="‘every element of A is an element of B’, and g="set A is a subset of
set B’. But since this is a definition, implicitly entailed is the converse g = p: ‘Ifaset A
is a subset of a set B, then every element of A is an element of B.” So the definition is
really:
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Definition 4.4. A set A is a subset of a set B if and only if every element of A is an
element of B.

Note that this implicit entailment is not a contradiction to the fact, discussed in the
previous chapter, that a conditional statement is not logically equivalent to its converse.
The propositions p — g and g — p will always remain logically distinct, and in general
the implication p = g says nothing about g = p. The previous paragraph only applies
to definitions, and its syntax is:

‘If p = q is a definition, then also ¢ = p , whence p < ¢’ (14)

5. Necessity and Sufficiency. — The law of inference

‘If p = ¢ and p is true, then q is true’ (15)

is called modus ponens. This inference follows from the fact that whenp = ¢q,p—gq is
true; so the situation that p is true and q is false (the only circumstance for which the
conditional p — ¢ is false) cannot occur. Thus, the truth of p predicates g. Incidentally,
modus ponens is the ‘theorem’ that begins the propositional canon in [8]. Note that the
truth of p — ¢ is required for the truth of p to entail the truth of ¢. In a general (not
necessarily true) conditional statement p —g, the truth values of p and g are
independent.

Because of its inferential entailment structure (that the truth of p is sufficient to
establish the truth of ¢), the implication p = ¢ may also be read as ‘p is sufficient for q’.
Contrapositively (hence equivalently), the falsehood of ¢ is sufficient to establish the
falsehood of p. In other words, if g is false, then p cannot possibly be true; i.e., the truth
of g is necessary (although some additional true statements may be required) to
establish the truth of p. Thus, the implication p = ¢ may also be read as ‘q is necessary
for p’. The equivalence p < ¢ (i.e., when ‘p iff ¢’ is true so that p and g predicate each
other) may, therefore, be read as ‘p is necessary and sufficient for q’.

The concepts of necessity and sufficiency are intimately related to the concept of
subset. Definition 4.4 is the statement:

ACBIiff Vx (x€A) = (x€B) (16)

Stated otherwise, when A is a subset of B (or, what is the same, B includes A),
membership in A is sufficient for membership in B, and membership in B is necessary
for membership in A.

The most basic property in set theory is that of equality, which is formulated as the
following axiom:

Axiom of Extension. Two sets are equal if and only if they have the same
elements.



CHEMISTRY & BIODIVERSITY - Vol. 4 (2007) 2305

If A and B are sets such that AC B and BCA (i.e., membership in A and in B are
necessary and sufficient for each other), then the two sets have the same elements. The
converse is equally obvious. The axiom of extension may, then, be restated as:

Theorem. Two sets A and B are equal iff ACB and BCA.

On account of this theorem, the proof of set equality A =B is usually split into two
parts: first prove that A C B, and then prove that BCA.
The major principle of set theory is the following axiom:

Axiom of Specification. For any set U and any statement p(x) about x, there
exists a set P the elements of which are exactly those x € U for which p(x) is true.

It follows immediately from this axiom that the set P is determined uniquely. To
indicate the way P is obtained from U and p(x), the customary notation is:

P={xeU:p(x)} 17)

The term ‘p(x)’ in form 7 is understood to mean “p(x)’ is true’ (with the conventional
omission of the predicate); it may also be read as ‘x has the property p’. For example, let
N be the set of all natural systems, and let s(/V) = ‘all models of N are simulable’. Then,
one may denote the set of all simple systems S (cf. Definition 2.1) (and synonymously
the set of all mechanisms M (cf. Definition 2.2)) as:

S=M={NEN:s(N)) (18)

When the ‘universal set’ U is obvious from the context (or inconsequential), it may be
dropped, and the notation /7 abbreviates to:

P={x:p(x)} (19)
As a trivial example, a set A may be represented as:
A={x:xcA} (20)

Statement /6 connects set inclusion with implication of the membership property.
Analogously, if one property implies another, then the set specified by the former is a
subset of the set specified by the latter (and conversely). Explicitly, if ‘x has the
property p’ implies that ‘x has the property ¢’, i.e., if Vx p(x) = g(x), then P={x:p(x)}
is a subset of Q@ ={x:q(x)} (and conversely):

PCQiff Vx (p)x = q(x) (21)

For example, let N be the set of all natural systems, with #(N) = ‘there is no closed path
of efficient causation in N’, and let:

T={NEN:«(N)} (22)
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Let M be the set of all mechanisms as specified in form /8 by s(N) =‘all models of N are
simulable’. Theorem 4.2 (the proof of which is the content of Chapt. 9 of [5]) is the
statement:

VYNEN s(N) = t(N) (23)
whence
McCT (24)

On the other hand, it is clear that if a natural system has no closed path of efficient
causation, then none of its models can have hierarchical cycles, so they are all
fractionable, whence simulable. (This is also discussed in detail as part of the relational
theory of machines in Chapt. 9 of [5].) Thus, while implication 23 itself requires all of
Chapt. 9 to prove (after establishing some ‘conclusions’ in Chapt. 8 of [5]), trivially
true is its converse:

VYNENt(N) = s(N) (25)
So, one also has:
TcM; (26)
and, together with inclusion 24, this means:
M=T (27)
Therefore, we can state the following theorem:

Theorem 5.1. A material system is a mechanism if and only if it has no closed
path of efficient causation.

6. Complements. — The relative complement of a set A in a set B is the set of
elements in B, but not in A:

B~A={xeB:x ¢ A} (28)

When B is the ‘universal set’ U (of some appropriate universe under study, e.g., the set
of all natural systems N), the set U~A is denoted as A¢, i.e.:

Ac={xeU:x ¢ A}, (29)

and is called simply the complement of the set A. An element of U is either a member of
A, or not a member of A, but not both. That is, AUA=U, and ANA°={.

The set specified by the property p, i.e., P={x :p(x)}, has as its complement the set
specified by the property —p;i.e.:
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Pe={x:mp(x)) (30)

The negation of the statement s(N)=‘all models of N are simulable’ is: 7s(N) = ‘there
exists a model of N that is not simulable’. This, by the way, is a law of quantifier negation
in the predicate calculus:

—Vx p(x) & Jx 7p(x) (31)

Thus, the set of all complex systems C is, by definition, the complement of the set of
simple systems S:

C=S8={NeN:~s(N)} (32)
Since S=M and M =T (Egns. 18 and 27, resp.), we can write:
C=M°=T¢ (33)

The negation of the statement #(/V) =‘there is no closed path of efficient causation in N’
is 7#(N)=‘there exists a closed path of efficient causation in N’. Any natural system,
through the modeling relation, generally has many different models that do not contain
any impredicative structures (or hierarchical cycles) of inferential entailment. The
limitation for a mechanism (or a simple system) is that this impoverishment applies to
all of its models (Theorem 5.1). The defining property of a complex system is that there
exists at least one model that does contain an impredicative structure of inferential
entailment, one that would correspond to the closed path of efficient causation in the
complex system being modeled. The complementarity

C=T¢={NeN:—t(N)} (34)
then leads to the next theorem:

Theorem 6.1. A natural system is complex if and only if it contains a closed path
of efficient causation.

Chapt. 18 of [2] contains a detailed discussion of Theorem 6.1 and its consequences.

7. Organism. — After the interlude in mathematical logic, we are now properly
equipped to study the fourth term: organism. In Chapt. 10 of [5], Rosen proposed an
answer to the ultimate biological question of ‘what is life ?”:

Definition 7.1. A material system is an organism if and only if it is closed to
efficient causation.

A natural system is said to be closed to efficient causation if its every efficient cause
is entailed within the system. In other words, the definition of ‘closure to efficient
causation’ for a natural system is that it has a corresponding formal system model that
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has a closed path containing all of the representations of efficient causes in its causal
entailment structure. Note that a complex system is not necessarily closed to efficient
causation. A complex system, according to Theorem 6.1, is only required to have a cycle
containing some, but not necessarily all, efficient causes; on the other hand, an
organism, by Definition 71, has a cycle that contains them al/l. A complex system is ‘not
a mechanism’; a living system requires a little bit more. This is how one distinguishes
between complex and living systems.

Stated otherwise, an organism must be complex; but a complex system may (or may
not) be an organism; i.e.:

0CC,butC ¢ O (35)

whence:

0+C (36)

Among the four terms that I set out to study in this paper, ‘simple system’ and ‘complex
system’ are not ‘everyday terms’, have no ‘standard definitions’, and hence may be used
according to Rosen’s Definition 2.1 without too often encountering the fallacy of
semantic equivocation. It may also be argued that the relational Definition 2.2 of
‘mechanism’ agrees well with its common kinematic structural definition, for example,
as in ‘an assemblage of bodies formed and connected to move upon one another with
definite relative motion’. But the word ‘organism’ has a well-established meaning in
common usage, that of ‘autonomous life form’. It is notable that in the passage from [1],
as quoted in Chapt. 1, Rosen italicized the first three terms (indicating that he had his
own technical definitions for them), but did not for the word ‘organism’ (which implied
that it was to be interpreted with its everyday meaning).

Since words mean ‘neither more nor less’ than what they are defined to mean, it
would be perfectly logically consistent if one just takes Rosen’s Definition 7.1 as the
definition of the word ‘organism’ and proceeds. But ‘reality’, alas, intervenes. If an
organism has to reflect the ‘reality’ of life, further explanation of Definition 7.1 is in
order.

8. (M,R)-Systems. — In the final, concluding Section 11 H of [5], Rosen wrote: ‘But
complexity, though I suggest it is the habitat of life, is not itself life. Something else is
needed to characterize what is alive from what is complex.” And in Chapt. 1 of [2], after
explaining that a living system must have nonsimulable models, hence must be
complex, he added: ‘To be sure, what I have been describing are necessary conditions,
not sufficient ones, for a material system to be an organism. That is, they really pertain to
what is not an organism, to what life is not. Sufficient conditions are harder, indeed,
perhaps there are none. If so, biology itself is more comprehensive than we presently
know.’

Rosen established the necessity for life with his detailed exposition in [5]. He chose
to define the sufficiency, using a class of relational models of organisms called (M,R)-
systems. The comprehensive reference is [9]. Rosen also discussed them in Sect. 3.5 of
[4],1in Sect. IVand Vof [1],in Sect. 10C of 5], and in Chapt. 17 of [2]. I have written on



CHEMISTRY & BIODIVERSITY - Vol. 4 (2007) 2309

their noncomputability and realizations in two recent papers [10][11]. The reader may
refer to any or all of the above for their details, which need not be repeated here.

For our present purpose, we only need to know that an (M,R)-system is an example
of a formal model of a natural system that is closed to efficient causation. In other
words, all its efficient causes are contained in an impredicative cycle of inferential
entailment, and it is, therefore, nonsimulable. By Definition 7.1, an (M,R)-system is a
model of an organism. The inclusion O C C means that any natural system that realizes
an (M,R)-system must be complex. Note, however, the implication (hence inclusion)
only goes one way; the converse is not true. An (M,R)-system has a very special
relational organization: in particular, it is closed to efficient causation, having all its
efficient causes in a cycle. A complex system is only required to contain a cycle
containing some of its efficient causes (whence entailing its nonsimulability ): there may,
however, be efficient causes that are not part of the cycle. So, not every nonsimulable
formal system is an (M,R)-system, whence not every complex system has an (M,R)-
system model.

Rosen’s idea behind (M,R)-systems was, as he explained in Chapt. 17 of [2], ‘to
characterize the minimal organization a material system would have to manifest or
realize to justify in calling it a cell’. His definition of a cell is:

Definition 8.1. A cell is (at least) a material structure that realizes an (M,R)-
system.

The word ‘cell’ is used here also in the sense of ‘autonomous life form’, i.e.,
‘organism’. This definition, thus, says that ‘having an (M,R)-system as a model’ is a
necessary condition for a natural system to be an autonomous life form. Immediately
after Definition 8.1, in the same paragraph in Chapt. 17 of [2], Rosen, in fact, added:
‘Making a cell means constructing such a realization. Conversely, I see no grounds for
refusing to call such a realization an autonomous life form, whatever its material basis
may be.’ The converse statement provides the sufficiency. So an alternative definition of
‘organism’ is:

Definition 8.2. A natural system is an organism if and only if it realizes an
(M,R)-system.

Definitions 8.2 and 71 are consistent. ‘Having an (M,R)-system as a model’, or,
equivalently, ‘closed to efficient causation’, is the necessary and sufficient condition for
a natural system to be an autonomous life form, on a relational level, even if one may
not readily recognize the natural system as ‘alive’ on a material level. This is the
definition of ‘organism’ in the Rosen canon. And this is the definition of ‘organism’ in
relational biology.

Let r(N)=°N has an (M,R)-system as its model’. Then the set of all organisms is:

O0={NEN:/(N)) (37)

With this definition of O, the conditions 35 and 36, O C C,but C ¢ O (whence O + C),
are satisfied. The set of organisms is a proper subset of the set of complex systems.
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9. The New Taxonomy. — We set out in this essay to study the following four subsets
of the set N of natural systems:

S={NeN:Nis a simple system}
M={N€EeN:N is a mechanism}
C={NeN:Nis a complex system}
O={NEN:N is an organism)}

We discovered that, in the Rosen etymology, these are their relations:

C=§¢ (38)
S=M (39)
0CC (but O +C) (40)

I will now briefly discuss two other related concepts, anticipatory system and
machine, and see where they fit in this relational universe. Rosen’s definitive and
pioneering treatment of anticipatory systems is, of course, given in the monograph [4].
The reader is referred to the original text for the details in their full glory. Here is the
basic definition:

Definition 9.1. An anticipatory system is a natural system that contains an
internal predictive model of itself and of its environment, which allows it to change
state at an instant in accord with the model’s predictions pertaining to a later
instant.

In Sect. 6.8 of [4], Rosen summarized thus: ‘The point of departure for our entire
development was the recognition that most of the behavior we observe in the biological
realm, if indeed not all of the behavior which we consider as characteristically biological,
is of an anticipatory rather than a reactive character. In fact, if it were necessary to try to
characterize in a few words the difference between living organisms and inorganic
systems, such a characterization would not involve the presence of DNA, or any other
purely structural attributes; but rather that organism constitute the class of systems which
can behave in an anticipatory fashion. That is to say, organisms comprise those systems
which can make predictive models (of themselves, and of their environments) and use
these models to direct their present actions.’

In short, anticipation is a necessary condition for life. Let A={NEN:N is an
anticipatory system}, then:

OCA,but A ¢ O (whence A +0) (41)

Rosen concluded in the final paragraph of Chapt. 7 of [4]: ‘Our final conceptual remark is
also in order. As we pointed out above, the Newtonian paradigm has no room for the
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category of final causation. This category is closely tied up with the notion of anticipation,
and in its turn, with the ability of systems to possess internal predictive models of themselves
and their environments, which can be utilized for the control of present actions. We have
argued at great length above that anticipatory control is indeed a distinguishing feature of the
organic world, and developed some of the unique features of such anticipatory systems. In
the present discussion, we have in effect shown that, in order for a system to be anticipatory, it
must be complex. Thus, our entire treatment of anticipatory systems becomes a corollary of
complexity. In other words, complex systems can admit the category of final causation in a
perfectly rigorous, scientifically acceptable way. Perhaps this alone is sufficient recompense
for abandoning the comforting confines of the Newtonian paradigm, which has served us so
well over the centuries. It will continue to serve us well, provided that we recognize its
restrictions and limitations as well as its strengths.’

The corollary is: an anticipatory system must be complex; a complex system may
(or may not) be anticipatory. In other words:

AcCC,but C ¢ A (whence A +£C) (42)

Thus, one has, in view of relations 4/ and 42, the hierarchy:

OCACC (43)

in which both inclusions are proper.
The formal definition of machine appears in Section 8B of [5], immediately
following that of mechanism:

Definition 9.2. A natural system is a machine if and only if it is a mechanism,
such that at least one of its models is already a mathematical machine.

Let K={N€N:N is a machine}; then, by definition, we have the inclusion:

KcM (44)

The subtle difference between K and M is as follows. For a mechanism N €M, every
model is simulable. This means every model may be simulated by a mathematical
(Turing) machine. For a machine N €K, all of its models are simulable, and among
them, at least one must be modeled by a mathematical machine. See Chapt. 7in [5] for a
detailed discussion of simulations and models. In other words, ‘simulable’ means ‘has a
mathematical machine simulation’; and ‘is a mathematical machine’ means ‘has a
mathematical machine model’. (The modeling relation is a natural isomorphism, and
mathematicians identify isomorphic objects.) That is, for a mechanism to be a machine,
one of those simulations must be more than that: it must be a model, in the sense
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discussed in Sect. 7F of [5]'). The distinction between mechanisms and machines is
thus:

Definition 2.2'. A natural system is a mechanism if and only if every one of its
models has a mathematical machine simulation.

Definition 9.2'. A natural system is a machine if and only if it is a mechanism,
such that at least one of its models has a mathematical machine model.

So, there are mechanisms that are not machines, whence K + M, and the inclusion
44 is also a proper one.

In Chapt. 19 of [2], Rosen used the diagram shown in Fig. I (there ‘figure 19.2’) to
represent the world of von Neumann complexity: the universality of physics, the
machine metaphor, and the finite threshold of complexity.

Fig. 1. The world of von Neumann complexity according
to Robert Rosen (taken from Chapt. 19 of [2], there figure
19.2)

He then suggested a taxonomy for natural systems that is profoundly different from
the concept shown in Fig. I: ‘The nature of science itself (and the character of

1) While we are on the topic of simulations and models in Sect. 7F of [5], it is appropriate to mention
that the entailment structure of a model was misprinted in [5]. It should read

a(g) = (a(x) = a(e(x))). [7E2]

And the ‘completely different’ entailment structure of simulation may be more clearly represented
as

Y = ([a(9), a(x)] = a(e(x)))- [7E3]

These two arrow diagrams contrast succinctly the difference between model and simulation. A
simulation of a process provides an alternate description of the entailed effects, whereas a model
additionally also provides an alternate description of the entailment structure of the mapping
representing the process itself.
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technologies based on sciences) depends heavily on whether the world is like figure 19.2
or like this new taxonomy.

In this new taxonomy, there is a partition between mechanisms and nonmechanisms.
Let us compare its complexity threshold with that of figure 19.2. In figure 19.2, the
threshold is porous; it can be crossed from either direction, by simply repeating a single
rote (syntactic) operation sufficiently often — an operation that amounts to ‘add one’
(which will ultimately take us from simple to complex) or ‘subtract one’ (which will
ultimately take us from complex to simple).

In the new taxonomy, on the other hand, the barrier between simple and complex is
not porous; it cannot be crossed at all in the direction from simple to complex; even the
opposite direction is difficult. There are certainly no purely syntactic operations that will
take us across the barrier at all. That is, no given finite number of repetitions of a single
rote operation will take us across the barrier in either direction; it can produce neither
simplicity from complexity, nor the reverse.’

In Fig. 2, I have drawn my own diagram of this new taxonomy, showing all the
subsets of natural systems discussed in this essay. This is the succinct summary of
Rosen’s science.

I—Nonporous
barrier

Fig. 2. Completed scheme of Rosen’s taxonomy

I defer the final word on the subject to Robert Rosen, himself, taken from the
introduction to Part V of [2]: ‘I am always asked by experimentalists why I do not
propose explicit experiments for them to perform, and subject my approaches to
verification at their hands. I do not do so because, in my view, the basic questions of
biology are not empirical questions at all, but, rather, conceptual ones; I tried to indicate
this viewpoint in Life Itself. But the chapters in this part, I hope, expound the true
empirical correlates of biological theory. In the realm of art and craft, rather than in a
traditional laboratory, will ample verification be found.’
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